Deep Learning download free [PDF and Ebook] by Yoshua Bengio

Deep Learning download free [PDF and Ebook] by Yoshua Bengio year 2017
  • Book name: Deep Learning
  • Author: Yoshua Bengio
  • Release date: 2017/8/23
  • Publisher: MIT PRESS LTD
  • Language: English
  • Genre or Collection: Teaching Resources and Education
  • ISBN: 9780262035613
  • Rating: 9.36 of 10
  • Votes: 403
  • Review by: Gordon Peter
  • Review rating: 8.61 of 10
  • Review Date: 2018/9/15
  • Total pages: 800
  • Includes a PDF summary of 73 pages
  • Description or summary of the book: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.'Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.'-Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceXDeep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
  • Estimated reading time (average reader): 53H33M20S
  • Other categories, genre or collection: Artificial Intelligence, Neural Networks & Fuzzy Systems, Teaching Resources & Education, Computer Science, Machine Learning
  • Available formats: WORD, TXT, EPUB, PDF, BMP, DOC, HTMLZ, OEB. Compressed in TAR.GZ, XZ, RAR, ZIP
  • Download servers: FileServe, MEGA, Torrent, Yandex.Disk, Dropbox
  • Format: Hardback
  • Approximate value: 90.36 USD
  • Dimensions: 178x229x32mm
  • Weight: 1,270.06g
  • Printed by: MIT Press
  • Published in: Cambridge, Mass., United States

More books of the publisher MIT PRESS LTD

More books in English

More books of 2017

More books of the genre or collection Teaching Resources and Education